contoh kalimat differential geometry
- In differential geometry, a geodesic is a generalization of the notion of a line to curved spaces.
Dalam geometri diferensial, konsep garis digeneralisasikan menjadi geodesi. - Robertson made important contributions to the mathematics of quantum mechanics, general relativity and differential geometry.
Robertson membuat kontribusi berpengaruh pada matematika mekanika kuantum, relativitas umum dan geometri diferensial. - Quantity and space both play a role in analytic geometry, differential geometry, and algebraic geometry.
Besaran dan ruang berperan penting di dalam geometri analitik, geometri diferensial, dan geometri aljabar. - The differential geometry of surfaces captures many of the key ideas and techniques endemic to this field.
Geometri diferensial permukaan menangkap banyak gagasan penting dan karakteristik teknik pada lapangan ini. - Shiing-Shen Chern of China won the inaugural Mathematical Sciences award for his work on differential geometry.
Shiing-Shen Chern berkebangsaan Tiongkok memenangkan penghargaan perdana Ilmu Matematika untuk karyanya pada geometri diferensial. - Geometry Trigonometry Differential geometry Topology Fractal geometry
Topologi – Geometri – Trigonometri – Geometri Aljabar – Geometri turunan – Topologi turunan – Topologi aljabar – Algebra linear – Geometri fraktal - Differential geometry is closely related to differential topology and the geometric aspects of the theory of differential equations.
Geometri diferensial berhubungan dekat dengan topologi diferensial, dan dengan aspek-aspek geometri pada teori persamaan diferensial. - In classical differential geometry, development refers to the simple idea of rolling one smooth surface over another in Euclidean space.
Dalam geometri diferensial klasik, pengembangan mengacu kepada gagasan sederhana untuk menggulung satu permukaan halus di atas ruang Euklides lainnya. - The concept of a tangent is one of the most fundamental notions in differential geometry and has been extensively generalized; see Tangent space.
Konsep persinggungan adalah satu dari gagasan paling mendasar dalam geometri diferensial dan telah digeneralisasikan secara ekstensif; lihat ruang singgung. - Since the late 19th century, differential geometry has grown into a field concerned more generally with the geometric structures on differentiable manifolds.
Sejak akhir abad ke-19, geometri diferensial telah berkembang menjadi sebuah lapangan yang memperhatikan secara lebih umum dengan struktur geometri pada lipatan terdiferensialkan. - Derivatives and their generalizations appear in many fields of mathematics, such as complex analysis, functional analysis, differential geometry, measure theory, and abstract algebra.
Turunan dan perampatannya (generalization) sering muncul dalam berbagai bidang matematika, seperti analisis kompleks, analisis fungsional, geometri diferensial, dan bahkan aljabar abstrak. - The case of the Laplace–Beltrami operator on a closed Riemannian manifold has been most intensively studied, although other Laplace operators in differential geometry have also been examined.
Kasus operator Laplace–Beltrami pada sebuah manifold Riemannian tertutup telah dipelajari paling intensif, meskipun operator Laplace dalam geometri diferensial lainnya juga dieksaminasi. - Differential geometry is a mathematical discipline that uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra to study problems in geometry.
Geometri diferensial adalah sebuah disiplin matematika yang menggunakan teknik-teknik kalkulus diferensial dan kalkulus integral, juga aljabar linear dan aljabar multilinear, hingga masalah-masalah kajian dalam geometri. - The theory of plane and space curves and surfaces in the three-dimensional Euclidean space formed the basis for development of differential geometry during the 18th century and the 19th century.
Teori kurva ruang dan bidang dalam ruang euklides tiga dimensi membentuk basis untuk pengembangan geometri diferensial pada abad ke-18 dan abad ke-19. - The subject of geometry was further enriched by the study of the intrinsic structure of geometric objects that originated with Euler and Gauss and led to the creation of topology and differential geometry.
Subyek geometri selanjutnya diperkaya oleh studi struktur intrinsik benda geometris yang berasal dengan Euler dan Gauss dan menyebabkan penciptaan topologi dan geometri diferensial. - He has worked on the theory of optimal transport and its applications to differential geometry, and with John Lott has defined a notion of bounded Ricci curvature for general measured length spaces.
Ia telah berkarya pada teori transportasi optimal dan aplikasi untuk diferensial geometri, dan dengan John Lott telah menetapkan gagasan kelengkungan Ricci terbatas untuk ruang panjang umum yang diukur. - The Gauss–Bonnet theorem, or Gauss–Bonnet formula, is an important statement in differential geometry about surfaces which connects their geometry (in the sense of curvature) to their topology (in the sense of the Euler characteristic).
Teorema Gauss–Bonnet atau formula Gauss–Bonnet dalam geometri diferensial adalah pernyataan penting tentang permukaan yang menghubungkan geometri mereka (dalam arti lengkungan) ke topologi mereka (dalam arti karakteristik Euler). - Real progress was made in the 1960s when the more exact tools of differential geometry entered the field of general relativity, allowing more exact definitions of what it means for a Lorentzian manifold to be singular.
Kemajuan nyata dibuat pada tahun 1960-an ketika metode geometri diferensial yang lebih presisi memasuki bidang teori relativitas umum, yang memungkinkan lebih banyak definisi yang lebih tepat tentang apa artinya Lorentzian manifold menjadi singular. - The topic of projective geometry is itself now divided into many research subtopics, two examples of which are projective algebraic geometry (the study of projective varieties) and projective differential geometry (the study of differential invariants of the projective transformations).
Cabang geometri projektif sendiri saat ini dibagi ke dalam banyak sub-cabang penelitian, dua contoh darinya adalah geometri aljabar projektif (kajian varietas projektif) dan geometri diferensial projektif (kajian invarian diferensial transformasi projektif). - Specialist in the field of convex and differential geometry, geometric PDEs and elastic shells theory, the author of the novel school textbook on geometry and university textbooks on analytical geometry, on differential geometry, and on foundations of geometry.
Spesialis di bidang geometri cembung dan diferensial, geometrik PDE dan teori kerang elastis, penulis buku teks novel sekolah baru tentang geometri dan buku teks universitas tentang geometri analitik, geometri diferensial, dan pondasi geometri.